3.1.3 Other Sets:

- c–5 wind classes
- *l*–3 wind locations (onshore, shallow offshore, deep offshore)
- cCSP-5 Concentrated Solar Power (CSP) classes
- pol-4 pollutants (SO_2 , NO_x , Hg, CO_2)
- *q*—Conventional generating technologies:
 - hydropower
 - natural gas

combustion turbine combined cycle

combined cycle with carbon capture and sequestration (CCS)

- coal

traditional pulverized coal, unscrubbed, scrubbed, or cofiring modern pulverized, with or without cofiring integrated gasification combined cycle (IGCC) with or without CCS

- oil-gas-steam
- nuclear
- dedicated biomass
- geothermal
- landfill gas/municipal solid waste
- others (distributed PV)
- *st*—There are 4 storage technologies:
 - pumped hydropower (PHS)
 - batteries
 - compressed air energy storage (CAES)
 - ice-storage

3.2 Major Decision Variables

The major decision variables include capacity of conventionals, renewables, and storage along with transmission; and dispatch of conventional capacity and storage. Unless otherwise noted, capacity variables are expressed in megawatts and energy variables are expressed in megawatt-hours.

- $Wtur_{c,i,l}$ new wind capacity
- WN_{c,i,i,l} new wind transmission capacity between regions
- WSurplus $_{n,m}$ wind curtailments (surplus)
- $CSPtur_{cCSP,i}$ new CSP capacity
- ullet CSPN $_{cCSP,i,j}$ new CSP transmission capacity
- \bullet ReT_{n,p} new transmission capacity for wind and CSP (renewables) between balancing areas

- ullet CONV_{n,q} conventional capacity
- $CONVgen_{n,m,q}$ conventional generation
- $SR_{n,m,q}$ spinning reserve capacity
- $QS_{n,q}$ quickstart capacity
- \bullet CONVT_{n,p,m} conventional transmission needs
- $STOR_{n,st}$ new storage capacity
- STORin_{n,m,st} energy into storage
- STORout $_{n,m,st}$ energy from storage
- STOR_OR $_{n,m,st}$ storage operating reserve capacity
- ullet TPCAN_{n,p} new transmission capacity for dispatchable sources
- \bullet CONTRACT cap_{n,p} — firm capacity contracted from another region
- RPSshortfall

3.3 Objective Function

In the objective function we minimize z where

$$\begin{split} z &= \sum_{c,i,l} \operatorname{Wtur}_{c,i,l} \cdot \$ capacity_{l} \\ &+ \sum_{c,i,j,l} \operatorname{WN}_{c,i,j,l} \cdot \$ capacity_{l} \\ &+ \sum_{cCSP,i} \operatorname{CSPtur}_{cCSP,i} \cdot \$ capacity \\ &+ \sum_{cCSP,i,j} \operatorname{CSPN}_{cCSP,i,j} \cdot \$ capacity \\ &+ \sum_{n,q} \operatorname{CONV}_{n,q} \cdot \$ capacity_{q} \\ &+ \sum_{n,p} \operatorname{TPCAN}_{n,p} \cdot \$ capacity \\ &+ \sum_{n,m,q} \operatorname{CONVgen}_{n,m,q} \cdot (\$ operation_{q} + \$ fuel_{q}) \\ &+ \sum_{n,m,q} \operatorname{SR}_{n,m,q} \cdot \$ operation_{q} \\ &+ \sum_{n,m,q} \operatorname{SR}_{n,m,q} \cdot \$ operation_{q} \\ &+ \sum_{n,s,t} \operatorname{STOR}_{n,s,t} \cdot \$ capacity_{st} \\ &+ \sum_{n,m,s,t} \operatorname{STORout}_{n,m,s,t} \cdot (\$ operation_{st} + \$ fuel_{st}) \\ &+ \sum_{n,m,q} \operatorname{CONVgen}_{n,m,q} \cdot \$ pollution_{q} \\ &+ \operatorname{RPSshortfall} \cdot \$ penalty \end{split}$$